STANDARDIZED LADDER OF FUNCTIONAL PROGRAMMING

FUNCTIONAL PROGRAMMING FLAVOR: STATICALLY-TYPED, CATEGORY-THEORETIC — HASKELL, PURESCRIPT, SCALA, ETC
The LambdaConf Ladder of Functional Programming (LOFP) is a standardized grouping of concepts and skills relevant to functional programming in a statically-typed, category-theoretic programming
environment. LOFP is used to categorize LambdaConf's workshops, talks, presentations, books, and courseware, so that aspiring functional programmers can better identify material that matches their

backgrounds.

CONCEPTS

e Immutable Data

e Second-Order Functions

» Constructing & Destructuring

¢ Function Composition

e First-Class Functions & Lambdas

SKILLS

Use second-order functions (mnp, filter, fuld) on immutable data structures
Destructure values to access their components

Use data types to represent optionality

Read basic type signatures

Pass lambdas to second-order functions

CONCEPTS

* Algebraic Data Types

* Pattern Matching

e Parametric Polymorphism

* General Recursion

* Type Classes, Instances, & Laws

» Lower-Order Abstractions (Equal, Semigroup, Monoid, etc)
» Referential Transparency & Totality

* Higher-Order Functions

* Partial-Application, Currying, & Point-Free Style

SKILLS

Solve problems without nulls, exceptions, or type casts
Process & transform recursive data structures using recursion
Able to use functional programming “in the small®

Write basic monadic code for a concrete monad

Create type class instances for custom data types

Model a business domain with ADTs

Write functions that take and return functions

Reliably identify & isolate pure code from impure code

Avoid introducing unnecessary lambdas & named parameters

CONCEPTS

* Generalized Algebraic Data Types

» Higher-Kinded Types

* Rank-N Types

* Folds & Unfolds

 Higher-Order Abstractions (Category, Functor, Monad)
e Basic Optics

e Efficient Persistent Data Structures

* Existential Types

» Embedded DSLs using Combinators

FIRE BRUSHE

SKILLS

Able to use functional programming “in the large”

Test code using generators and properties

Write imperative code in a purely functional way through monads
Use popular purely functional libraries to solve business problems
Separate decision from effects

Write a simple custom lawful monad

Write production medium-sized projects

Use lenses & prisms to manipulate data

Simplify types by hiding irrelevant data with existentials

CONCEPTS

* Codata

» (Co)Recursion Schemes

¢ Advanced Optics

» Dual Abstractions (Comonad)

e Monad Transformers

* Free Monads & Extensible Effects

¢ Functional Architecture

e Advanced Functors (Expanential, Profunctors, Contravariant)
* Embedded DSLs using GADTSs, Finally Tagless
» Advanced Monads (Continuation, Logic)

¢ Type Families, Functional Dependencies

SKILLS

Design a minimally-powerful monad transformer stack
Write concurrent and streaming programs

Use purely functional mocking in tests

Use type classes to modularly model different effects
Recognize type patterns & abstract over them

Use functional libraries in novel ways

Use optics to manipulate state

Write custom lawful monad transformers

Use free monads [extensible effects to separate concerns
Encode invariants at the type level

Effectively use FDs | type families to create safer code

CONCEPTS

* High-Performance

¢ Kind Polymorphism

* Generic Programming

* Type-Level Programming

*» Dependent-Types, Singleton Types
* Category Theory

e Graph Reduction

* Higher-Order Abstract Syntax

» Compiler Design for Functional Languages
e Profunctor Optics

RELEASED UNDER CC BY-NC 4.0
COPYRIGHT © FANTASYLAND INSTITUTE OF LEARNING. ALL RIGHTS RESERVED.

SKILLS

Design a generic, lawful library with broad appeal

Prove properties manually using equational reasoning

Design & implement a new functional programming language

Create novel abstractions with laws

Write distributed systems with certain guarantees

Use proof systems to formally prove properties of code

Create libraries that do not permit invalid states

Use dependent-typing to prove more properties at compile-time
Understand deep relationships between different concepts

Profile, debug, & optimize purely functional code with minimal sacrifices

FANTASYLNAND

||||||||| - o O T

